首页 > 新闻中心 > 碳化硅材料研究现状与行业应用

碳化硅材料研究现状与行业应用

2020-06-16浏览量:3278

信息导读:

半导体器件是现代工业整机设备的核心,广泛应用于计算机、消费类电子、网络通信、汽车电子等核心领域,半导体器件产业主要由四个基本部分组成:集成电路、光电器件、分立器件、传感器,其中集成电路占到了80%以上,因此通常又将半导体和集成电路等价。

  集成电路,按照产品种类又主要分为四大类:微处理器、存储器、逻辑器件、模拟器件。然而随着半导体器件应用领域的不断扩大,许多特殊场合要求半导体能够在高温、强辐射、大功率等环境下依然能够坚持使用、不损坏,第一、二代半导体材料便无能为力,于是第三代半导体材料便应运而生。

  目前,以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带半导体材料以更大的优势占领市场主导,统称第三代半导体材料。第三代半导体材料具有更宽的禁带宽度,更高的击穿电场、热导率、电子饱和速率及更高的抗辐射能力,更适合于制作高温、高频、抗辐射及大功率器件,通常又被称为宽禁带半导体材料(禁带宽度大于2.2eV),亦称为高温半导体材料。从目前第三代半导体材料和器件的研究来看,较为成熟的是碳化硅和氮化镓半导体材料,且碳化硅技术最为成熟,而氧化锌、金刚石、氮化铝等材料的研究尚属起步阶段。

  一、材料及其特性

  碳化硅材料普遍用于陶瓷球轴承、阀门、半导体材料、陀螺、测量仪、航空航天等领域,已经成为一种在很多工业领域不可替代的材料。

  SiC是一种天然超晶格,又是一种典型的同质多型体。由于Si与C双原子层堆积序列的差异会导致不同的晶体结构,有着超过200种(目前已知)同质多型族。因此SiC非常适合用作新一代发光二极管(LED)衬底材料、大功率电力电子材料。

  碳化硅的物理化学性能

  二、加工工艺研究

  SiC的硬度仅次于金刚石,可以作为砂轮等磨具的磨料,因此对其进行机械加工主要是利用金刚石砂轮磨削、研磨和抛光,其中金刚石砂轮磨削加工的效率最高,是加工SiC的重要手段。但是SiC材料不仅具有高硬度的特点,高脆性、低断裂韧性也使得其磨削加工过程中易引起材料的脆性断裂从而在材料表面留下表面破碎层,且产生较为严重的表面与亚表层损伤,影响加工精度。因此,深入研究SiC磨削机理与亚表面损伤对于提高SiC磨削加工效率和表面质量具有重要意义。

  1、硬脆材料的研磨机理

  对硬脆材料进行研磨,磨料对其具有滚轧作用或微切削作用。磨粒作用于有凹凸和裂纹的表面上时,随着研磨加工的进行,在研磨载荷的作用下,部分磨粒被压入工件,并用露出的尖端划刻工件的表面进行微切削加工。另一部分磨粒在工件和研磨盘之间进行滚动而产生滚轧作用,使工件的表面形成微裂纹,裂纹延伸使工件表面形成脆性碎裂的切屑,从而达到表面去除的目的。

  因为硬脆材料的抗拉强度比抗压强度要小,对磨粒施加载荷时,会在硬脆材料表面的拉伸应力的最大处产生微裂纹。当纵横交错的裂纹延伸且相互交叉时,受裂纹包围的部分就会破碎并崩离出小碎块。此为硬脆材料研磨时的切屑生成和表面形成的基本过程。

  由于碳化硅材料属于高硬脆性材料,需要采用专用的研磨液,碳化硅研磨的主要技术难点在于高硬度材料减薄厚度的精确测量及控制,磨削后晶圆表面出现损伤、微裂纹和残余应力,碳化硅晶圆减薄后会产生比碳化硅晶圆更大的翘曲现象。

  2、碳化硅的抛光加工研究

  目前碳化硅的抛光方法主要有:机械抛光、磁流变抛光、化学机械抛光(CMP)、电化学抛光(ECMP)、催化剂辅助抛光或催化辅助刻蚀(CACP/CARE)、摩擦化学抛光(TCP,又称无磨料抛光)和等离子辅助抛光(PAP)等。

  化学机械抛光(CMP)技术是目前半导体加工的重要手段,也是目前能将单晶硅表面加工到原子级光滑最有效的工艺方法,是能在加工过程中同时实现局部和全局平坦化的唯一实用技术。

  CMP的加工效率主要由工件表面的化学反应速率决定。通过研究工艺参数对SiC材料抛光速率的影响,结果表明:旋转速率和抛光压力的影响较大;温度和抛光液pH值的影响不大。为提高材料的抛光速率应尽量提高转速,虽然增加抛光压力也可提高去除速率,但容易损坏抛光垫。

  目前的碳化硅抛光方法存在着材料去除率低、成本高的问题,且无磨粒研抛、催化辅助加工等加工方法,由于要求的条件苛刻、装置操作复杂,目前仍处在实验室范围内,批量生产的实现可能性不大。

  人类1905年 第一次在陨石中发现碳化硅,现在主要来源于人工合成,碳化硅有许多用途,行业跨度大,可用于单晶硅、多晶硅、砷化钾、石英晶体等、太阳能光伏产业、半导体产业、压电晶体产业工程性加工材料。

  在半导体领域的应用

  碳化硅一维纳米材料由于自身的微观形貌和晶体结构使其具备更多独特的优异性能和更加广泛的应用前景,被普遍认为有望成为第三代宽带隙半导体材料的重要组成单元。

  第三代半导体材料即宽禁带半导体材料,又称高温半导体材料,主要包括碳化硅、氮化镓、氮化铝、氧化锌、金刚石等。这类材料具有宽的禁带宽度(禁带宽度大于2.2ev)、高的热导率、高的击穿电场、高的抗辐射能力、高的电子饱和速率等特点,适用于高温、高频、抗辐射及大功率器件的制作。第三代半导体材料凭借着其优异的特性,未来应用前景十分广阔。

  在光伏领域的应用

  光伏逆变器对光伏发电作用非常重要,不仅具有直交流变换功能,还具有最大限度地发挥太阳电池性能的功能和系统故障保护功能。归纳起来有自动运行和停机功能、最大功率跟踪控制功能、防单独运行功能(并网系统用)、自动电压调整功能(并网系统用)、直流检测功能(并网系统用)、直流接地检测功能(并网系统用)等。

  国内逆变器厂家对新技术和新器件的应用还是太少,以碳化硅为功率器件的逆变器,并且开始大批量应用,碳化硅内阻很少,可以把效率做很高,开关频率可以达到10K,也可以节省LC滤波器和母线电容。碳化硅材料在光伏逆变器应用上或有突破。

  在航空领域的应用

  碳化硅制作成碳化硅纤维,碳化硅纤维主要用作耐高温材料和增强材料,耐高温材料包括热屏蔽材料、耐高温输送带、过滤高温气体或熔融金属的滤布等。用做增强材料时,常与碳纤维或玻璃纤维合用,以增强金属(如铝)和陶瓷为主,如做成喷气式飞机的刹车片、发动机叶片、着陆齿轮箱和机身结构材料等,还可用做体育用品,其短切纤维则可用做高温炉材等。

  碳化硅粗料已能大量供应,但是技术含量极高 的纳米级碳化硅粉体的应用短时间不可能形成规模经济。碳化硅晶片在我国研发尚属起步阶段,碳化硅晶片在国内的应用较少,碳化硅材料产业的发展缺乏下游应用企业的支撑。就人才培养和技术研发等开展密切合作;加强企业间的交流,尤其要积极参加国际交流活动,提升企业发展水平;关注企业品牌建设,努力打造企业的拳头产品等。

  全球半绝缘碳化硅晶圆材料市场的发展趋势。半绝缘衬底具备高电阻的同时可以承受更高的频率,因此在5G通讯和新一代智能互联,传感感应器件上具备广阔的应用空间。当前主流半绝缘衬底的产品以4英寸为主。2017年,全球半绝缘衬底的市场需求约4万片。预计到2020年,4英寸半绝缘衬底的市场保持在4万片,而6英寸半绝缘衬底的市场迅速提升至4~5万片;2025~2030年,4英寸半绝缘衬底逐渐退出市场,而6英寸晶圆将增长至20万片。

  国际上碳化硅单晶衬底材料的产业化公司主要有美国科锐(Cree)、II-VI、道康宁(Dow Corning),德国SiCrystal(被日本罗姆Rohm收购)等公司,其碳化硅单晶产品覆盖4英寸和6英寸。

  国内主要碳化硅单晶衬底材料企业和研发机构已经具备了成熟的4英寸零微管碳化硅单晶产品,并已经研发出了6英寸单晶样品,但是在晶体材料质量和产业化能力方面距离国际先进水平存在一定差距。

  碳化硅外延材料

  与传统硅功率器件制作工艺不同的是,碳化硅功率器件不能直接制作在碳化硅单晶材料上,必须在导通型单晶衬底上额外生长高质量的外延材料,并在外延层上制造各类器件。主要的外延技术是化学气相沉积(CVD),通过台阶流的生长来实现一定厚度和掺杂的碳化硅外延材料。随着碳化硅功率器件制造要求和耐压等级的不断提高,碳化硅外延材料不断向低缺陷、厚外延方向发展。近年来,薄碳化硅外延材料(20 μm以下)的质量不断提升,外延材料中的微管缺陷已经消除,掉落物、三角形、胡萝卜、螺位错、基平面位错、深能级缺陷等成为影响器件性能的主要因素。随着外延生长技术的进步,外延层厚度也从过去的几μm、十几μm发展到目前的几十μm、上百μm。

  由于碳化硅器件必须制作在外延材料上,所以基本上所有碳化硅单晶材料都将作为衬底材料用来生长外延材料。国际上碳化硅外延材料技术发展迅速,最高外延厚度达到250 μm以上。其中,20 μm及以下的外延技术成熟度较高,表面缺陷密度已经降低到1个/cm2以下,位错密度已从过去的105个/cm2,降低到目前的103个/cm2以下,基平面位错的转化率接近100 %,已经基本达到碳化硅器件规模化生产对外延材料的要求。近年来国际上30 μm~50 μm外延材料技术也迅速成熟起来,但是由于受到市场需求的局限,产业化进度缓慢。目前批量碳化硅外延材料的产业化公司有美国的Cree、Dow Corning,日本昭和电工(Showa Denko)等。

  我国碳化硅外延材料的研发和产业化水平紧紧跟随国际水平,产品已打入国际市场。在产业化方面,我国20μm及以下的碳化硅外延材料产品水平接近国际先进水平;在研发方面,我国开发了100μm的厚外延材料,在厚外延材料缺陷控制等方面距离国际先进水平有一定的差距。同时,由于国内碳化硅芯片制造能力薄弱,对碳化硅单晶和材料的需求较低,尚不足以完全支撑和拉动我国碳化硅单晶衬底和外延材料产业的发展。

  碳化硅功率器件

  碳化硅功率半导体器件包括二极管和晶体管,其中二极管主要有结势垒肖特基功率二极管(JBS)、PiN功率二极管和混合PiN肖特基二极管(MPS);晶体管主要有金属氧化物半导体场效应晶体管(MOSFET)、双极型晶体管(BJT)、结型场效应晶体管(JFET)、绝缘栅双极型晶体管(IGBT)和门极可关断晶闸管(GTO)等。

  2001年,德国英飞凌(Infineon)公司最先发布碳化硅肖特基功率二极管产品,同年美国Cree公司也实现了碳化硅肖特基功率二极管的产业化。由于碳化硅晶体管的技术难度大,产业化进度落后于二极管。2010年,日本Rohm公司首先量产SiC MOSFET产品,2011年美国Cree公司开始销售SiC MOSFET产品。SiC IGBT和GTO等器件由于技术难度更大,仍处于研发阶段,距离产业化有较大的差距。SiC JBS二极管和MOSFET晶体管由于其性能优越,成为目前应用最广泛、产业化成熟度最高的碳化硅功率器件。

  随着国际上碳化硅功率器件技术的进步和制造工艺从4英寸升级到6英寸,器件产业化水平不断提高,碳化硅功率器件的成本迅速下降。全球碳化硅功率器件市场的发展趋势。2017年全球碳化硅功率器件(主要是SiC JBS和MOSFET)的市场接近17亿元人民币。Yole公司预测,2017~2020年,碳化硅器件的复合年均增长率超过28 %,到2020年市场规模达到35亿元人民币,并以超过40 %的复合年均增长率继续快速增长。预计到2025年,全球碳化硅功率器件市场规模将超过150亿元人民币,到2030年,全球碳化硅功率器件市场规模将超过500亿元人民币。国内碳化硅器件的市场约占国际市场的40 %~50 %。

  目前,国际上主要的碳化硅功率器件产业化公司有美国Wolfspeed、德国Infineon、日本Rohm、欧洲的意法半导体(STMicroelectronics)、日本三菱(Mitsubishi),这几家大公司约占国际市场的90 %,另外,美国通用电气(GE)、日本丰田(Toyota)、日本富士(Fuji)、日本东芝(Toshiba)、MicroSemi、USCi、GeneSiC等公司也开发了碳化硅功率器件产品。在SiC二极管产品方面,美国Wolfspeed(包括Cree)、德国Infineon公司已经推出了五代 SiC JBS产品;其中Wolfspeed的第四代及以前的产品为平面型,第五代为沟槽型,并且在第五代650 V器件中采用了晶圆减薄工艺将碳化硅晶圆由370 μm减薄至180 μm,进一步提高了器件的性能。Rohm公司开发了三代SiC二极管,最新产品也采用了沟槽型结构。Infineon公司的前四代SiC二极管以600 V、650 V产品为主,从第五代开始推出1200 V产品,即将推出第六代低开启电压的SiC JBS产品。在MOSFET器件方面,Wolfspeed公司推出600 V、1200 V和1700 V共三个电压等级、几十款平面栅MOSFET器件产品,电流从1 A~50 A不等;2017年3月,美国Wolfspeed公司发布了900 V/150 A的SiC MOSFET芯片,是目前单芯片电流容量最大的SiC MOSFET产品;Rohm公司的SiC MOSFET产品有平面栅和沟槽栅两类,电压等级有650 V和1200 V;意法半导体开发了650 V和1200 V两个电压等级的SiC MOSFET产品,Infineon公司也推出了沟槽栅的1200 V SiC MOSFET产品。另外,GeneSiC公司开发了1200 V和1700 V的 SiC BJT产品,Infineon和USCi公司开发了1200 V的SiC JFET产品。在研发领域,国际上已经开发了10 kV以上的JBS、MOSFET、JFET、GTO等器件样品,以及20 kV以上的PiN、GTO和IGBT器件样品,由于受到碳化硅材料缺陷水平、器件设计技术、芯片制造工艺、器件封装驱动技术以及市场需求的制约,以上高压器件短期内无法实现产业化。

  “十二五”初期,我国掀起了研发第三代功率半导体器件领域的热潮;“十三五”期间,我国掀起了第三代功率半导体材料和器件产业化的浪潮。当前,我国的碳化硅功率器件产品以二极管产品为主,若干单位具备开发晶体管产品的能力,尚未实现产业化。在国家科技项目和各级政府的支持下,目前国内有多家企业建成或正在建设多条碳化硅芯片工艺线,这些工艺线的投产,将会大大提升国内碳化硅功率器件的产业化水平。

  碳化硅功率模块

  为了进一步提升碳化硅功率器件的电流容量,通常采用模块封装的方法把多个芯片进行并联集成封装。碳化硅功率模块首先是从由硅IGBT芯片和SiC JBS二极管芯片组成的混合功率模块产品发展起来的。随着SiC MOSFET器件的成熟,Wolfspeed、Infineon、三菱、Rohm等公司开发了由SiC JBS二极管和MOSFET组成的全碳化硅功率模块。目前国际上的碳化硅功率模块产品最高电压等级3300 V,最大电流700 A,最高工作温度175 ℃。在研发领域,全碳化硅功率模块最大电流容量达到1200 A,最高工作温度达到250 ℃,并采用芯片双面焊接、新型互联和紧凑型封装等技术来提高模块性能。

  基于我国成熟的硅基功率模块的封装技术和产业,我国碳化硅功率模块的产业化水平紧跟国际先进水平。由于国内SiC MOSFET芯片产品尚未实现产业化,我国开发碳化硅功率模块产品中的MOSFET芯片全部采用进口芯片。

  碳化硅功率半导体的典型应用。碳化硅功率器件具有高电压、大电流、高温、高频率、低损耗等独特优势,将极大地提高现有能源的转换效率,对高效能源转换领域产生重大而深远的影响,主要领域有智能电网、轨道交通、电动汽车、新能源并网、通讯电源等。

  碳化硅功率半导体存在的问题

  尽管全球碳化硅器件市场已经初具规模,但是碳化硅功率器件领域仍然存在一些诸多共性问题亟待突破,比如碳化硅单晶和外延材料价格居高不下、材料缺陷问题仍未完全解决、碳化硅器件制造工艺难度较高、高压碳化硅器件工艺不成熟、器件封装不能满足高频高温应用需求等,全球碳化硅技术和产业距离成熟尚有一定的差距,在一定程度上制约了碳化硅器件市场扩大的步伐。

  1、碳化硅单晶材料

  国际上碳化硅单晶材料领域存在的问题主要有:

  (1)大尺寸碳化硅单晶衬底制备技术仍不成熟。目前国际上碳化硅芯片的制造已经从4英寸换代到6英寸,并已经开发出了8英寸碳化硅单晶样品,与先进的硅功率半导体器件相比,单晶衬底的尺寸仍然偏小、缺陷水平仍然偏高。

  (2)缺乏更高效的碳化硅单晶衬底加工技术。碳化硅单晶衬底材料线切割工艺存在材料损耗大、效率低等缺点,必须进一步开发大尺寸碳化硅晶体的切割工艺,提高加工效率。衬底表面加工质量的好坏直接决定了外延材料的表面缺陷密度,而大尺寸碳化硅衬底的研磨和抛光工艺仍不能满足要求,需要进一步开发研磨、抛光工艺参数,降低晶圆表面粗糙度。

  (3)P型衬底技术的研发较为滞后。目前商业化的碳化硅产品是单极型器件。未来高压双极型器件需要P型衬底。目前碳化硅P型单晶衬底缺陷较高、电阻率较高,其基础科学问题尚未得到突破,技术开发滞后。

  近年来,我国碳化硅单晶材料领域取得了长足进步,但与国际水平相比仍存在一定的差距。除了以上共性问题以外,我国碳化硅单晶材料领域在以下两个方面存在巨大的风险:一是本土碳化硅单晶企业无法为国内已经/即将投产的6英寸芯片工艺线提供高质量的6英寸单晶衬底材料。(2)碳化硅材料的检测设备完全被国外公司所垄断。

  2. 碳化硅外延材料

  国际上碳化硅外延材料领域存在的问题主要有:

  (1)N型碳化硅外延生长技术有待进一步提高。目前外延材料生长过程中气流和温度控制等技术仍不完美,在6英寸碳化硅单晶衬底上生长高均匀性的外延材料技术仍有一定挑战,一定程度影响了中低压碳化硅芯片良率的提高。

  (2)P型碳化硅外延技术仍不成熟。高压碳化硅功率器件是双极型器件,对P型重掺杂外延材料提出了要求,目前尚无满足需求的低缺陷、重掺杂的P型碳化硅外延材料。

  近年来我国碳化硅外延材料技术获得了长足进展,申请了一系列的专利,正在缩小与其它国家的差距,已经开始批量采用本土4英寸单晶衬底材料,产品已经打入国际市场。但是,以下两个方面存在巨大的风险:一是目前国内碳化硅外延材料产品以4英寸为主,由于受单晶衬底材料的局限,尚无法批量供货6英寸产品。二是碳化硅外延材料加工设备全部进口,将制约我国独立自主产业的发展壮大。

  3. 碳化硅功率器件

  虽然国际上碳化硅器件技术和产业化水平发展迅速,开始了小范围替代硅基二极管和IGBT的市场化进程,但是碳化硅功率器件的市场优势尚未完全形成,尚不能撼动目前硅功率半导体器件市场上的主体地位。国际碳化硅器件领域存在的问题主要有:

  (1)碳化硅单晶及外延技术还不够完美,高质量的厚外延技术不成熟,这使得制造高压碳化硅器件非常困难,而外延层的缺陷密度又制约了碳化硅功率器件向大容量方向发展。

  (2)碳化硅器件工艺技术水平还比较低,这是制约碳化硅功率器件发展和推广实现的技术瓶颈,特别是高温大剂量高能离子注入工艺、超高温退火工艺、深槽刻蚀工艺和高质量氧化层生长工艺尚不理想,使得碳化硅功率器件中存在不同程度的高温和长期工作条件下可靠性低的缺陷。

  (3)在碳化硅功率器件的可靠性验证方面,其试验标准和评价方法基本沿用硅器件,尚未有专门针对碳化硅功率器件特点的可靠性试验标准和评价方法,导致试验情况与实际使用的可靠性有差距。

  (4)在碳化硅功率器件测试方面,碳化硅器件测试设备、测试方法和测试标准基本沿用硅器件的测试方法,导致碳化硅器件动态特性、安全工作区等测试结果不够准确,缺乏统一的测试评价标准。

  除了以上共性问题外,我国碳化硅功率器件领域发展还存在研发时间短,技术储备不足,进行碳化硅功率器件研发的科研单位较少,研发团队的技术水平跟国外还有一定的差距等问题,特别是在以下三个方面差距巨大:一是在SiC MOSFET器件方面的研发进展缓慢,只有少数单位具备独立的研发能力,存在一定程度上依赖国际代工企业来制造芯片的弊病,容易受制于人,产业化水平不容乐观。二是碳化硅芯片主要的工艺设备基本上被国外公司所垄断,特别是高温离子注入设备、超高温退火设备和高质量氧化层生长设备等,国内大规模建立碳化硅工艺线所采用的关键设备基本需要进口。三是碳化硅器件高端检测设备被国外所垄断。

  4. 碳化硅功率模块

  当前碳化硅功率模块主要有引线键合型和平面封装型两种。为了充分发挥碳化硅功率器件的高温、高频优势,必须不断降低功率模块的寄生电感、降低互连层热阻,并提高芯片在高温下的稳定运行能力。目前碳化硅功率模块存在的主要问题有:

  (1)采用多芯片并联的碳化硅功率模块,由于结电容小、开关速度高,因此在开关过程中会出现极高的电流上升率(di/dt)和电压上升率(dv/dt),在这种情况下会产生较严重的电磁干扰和额外损耗,无法发挥碳化硅器件的优良性能。

  (2)碳化硅功率模块的封装工艺和封装材料基本沿用了硅功率模块的成熟技术,在焊接、引线、基板、散热等方面的创新不足,功率模块杂散参数较大,可靠性不高。

  (3)碳化硅功率高温封装技术发展滞后。目前碳化硅器件高温、高功率密度封装的工艺及材料尚不完全成熟。为了发挥碳化硅功率器件的高温优势,必须进一步研发先进烧结材料和工艺,在高温、高可靠封装材料及互连技术等方面实现整体突破。

  5. 碳化硅功率半导体的应用

  尽管碳化硅功率器件应用前景广阔,但是目前受限于价格过高等因素,迄今为止,市场规模并不大,应用范围并不广,主要集中于光伏、电源等领域。目前碳化硅器件应用存在的主要问题有:(1)碳化硅功率器件的驱动技术尚不成熟。为了充分发挥碳化硅功率器件的高频、高温特性,要求其驱动芯片具有工作温度高、驱动电流大和可靠性高的特点。目前驱动芯片沿用硅器件的驱动技术,尚不能满足要求。(2)碳化硅功率器件的保护技术尚不完善。碳化硅功率器件具有开关频率快、短路时间短等特点,目前器件保护技术尚不能满足需求。(3)碳化硅器件的电路应用开关模型尚不能全面反映碳化硅功率器件的开关特性,尚不能对碳化硅器件的电路拓扑仿真设计提供准确的指导。(4)碳化硅功率器件应用中的电磁兼容问题尚未完全解决。(5)碳化硅功率器件应用的电路拓扑尚不够优化。目前碳化硅功率器件的应用电路拓扑基本上沿用硅器件的电路拓扑,没有开发出完全发挥碳化硅功率器件优势的新型电路拓扑结构。

  碳化硅是典型的实用宽禁带半导体材料之之一,跟硅和砷化镓一样具有典型的半导体特性,被人们称为继硅和砷化镓之后的“第三代半导体”,尤其在制造电力电子器件方面具有广阔的应用前景。但是,在半导体已深得人心的一个很长时期内,很多人对碳化硅的了解,还仅限于它的高硬度、耐磨和耐高温特性,因而其实用价值在过去的长时期内主要是作为研磨材料应用于机械加工和作为耐火材料应用于金属冶炼。

  虽然碳化硅作为半导体材料的应用比硅和砷化镓几乎晚了半个世纪,但早在1824年,瑞典科学家J.J. Berzelius(1779-1848)在人工合成金刚石的过程中就已经观察到了它的存在。不过,由于自然界中天然碳化硅晶体极少,人工合成又极困难,人们在那个年代对其不可能有太多了解。直到E.G. Acheson(1856-1931)发明了碳化物晶体的人工制造技术之后,人们才开始对其逐渐有所认识。

  高饱和电子迁移率(Si的2.5倍)以及高健合能等优点,这就使得碳化硅材料可以很好地适用于高性能(高频、高温、高功率、抗辐射)电子器件。高的热导率有利于大功率器件的热耗散和高密度集成高的载流子饱和迁移速率可以使之应用于高速开关器件;高的临界位移能使碳化硅器件的抗辐射性能优于Si器件。

  由于碳化硅材料的带隙很宽(4H型碳化硅在室温下约为3.26eV),碳化硅器件能够在很高的温度下工作而不至于因为本征载流子激发导致器件性能失效。碳化硅材料在发生雪崩击穿前所能够忍受的极限电场是硅材料和砷化镓(GaAs)的5~20倍12。这一高极限电场可以用来制造高压、大功率器件。

  碳化硅材料具有很高的临界位移能约为45~90eV。这使得碳化硅材料具有很高的抗辐射能力和抗电磁波冲击(EMP:ElectroMagnetic Pluse)能力。

  表1 室温下几种半导体材料特性的比较

  表1列出了碳化硅与主要半导体材料在室温下的材料参数。从表中可以看出碳化硅与砷化镓相对硅具有更优良的特性,因此这两种材料能够制作高温高压大功率器件。在宽禁带半导体材料中,碳化硅是最有希望首先取得突破,因为SIC是除了Si以外唯一能够热氧化生长Sio2的半导体,而且SIC器件工艺和设备都与Si器件有很强的兼容性。碳化硅高的临界击穿电场使其漂移区的电阻减少200倍,从而使高压器件的导通电压比目前所有的硅功率器件(IGBT、SBD、PiN)都小得多。

  然而难以获得高质量的碳化硅衬底一直是阻碍这一领域发展的主要难题。随着1978年的大面积碳化硅籽晶生长法的出现以及随后碳化硅薄膜制备技术的完备,碳化硅材料得到了进一步的发展。随着碳化硅材料制造工艺的进一步发展,以及制造成本的不断下降,碳化硅材料将在高温、高频、光电子、抗辐射等领域拥有广阔的应用发展前景,如表2。

  表2 碳化硅(SIC)材料的应用领域



本文主要科普碳化硅相关知识,如需转载请标明出处!

0
留言区

留言板

还没有内容,赶快发言吧……